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Mathematics is such a vast and rapidly expanding field of study that there are

inevitably many important and fascinating aspects of the subject which do not find

a place in the curriculum simply because of lack of time, even though they are well

within the grasp of secondary school students.
Some classes and many individual students, however, may find time to pursue

mathematical topics of special interest to them. The School Mathematics Study

Group is preparing pamphlets designed to make material for such study readily

accessible. Some of the pamphlets deal with material found in the regular curric-

ulum but in a more extended manner or from a novel point of view. Others deal

with topics not usually found at all in the standard curriculum.
This particular series of pamphlets, the Reprint Series, makes available ex-

:ository articles which appeared in a variety of mathematical periodicals. Even if

the periodicals were available to all schools, there is convenience in having articles

on one topic collected and reprinted as is done here.

This series was prepared for the Panel on Supplementary Publications by

Professor William L. Schaaf. His judgment, background, bibliographic skills, and

editorial efficiency were major factors in the design and successful completion of

the pamphlets.
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PREFACE

Music means different things to different people and exhibits many faces:

musical sounds and tones; scales and modes; musical notation; harmony and

dissonance; rhythm, melody and counterpoinr, musical composition and forms;

the human voice and choral music; orchestral and symphonic music; acoustics

and the reproduction of music by phonograph, radio, T-V, sound motion pic-

tures. In what ways, if any, are these various facets of music related to mathe-

matics? What has mathematics contributed to musical notation? to the theory

of composition? to the design of musical instruments? to the high-fidelity

reproduction of musk? Is the composer awire of mathematical relations in-

volved in music and musical composition? Can the mathematician, as mathe-

matician, enrich the domain of the musician? These are questions more easily

asked than answered. Moreover, such answers as have been given are, for the

most part, scattered through various periodicals, often inaccessible. That is why

we have brought these essays together for your enjoyment. It is hoped that

they will at least open new horizons for you, even if they do not answer your

questions completely. You may then agree with Morris Kline when he says

"the most abstract of the arts can be transcribed into the most abstract of the

sciences, and the mou reasoned of the arts is clearly recognized to be akin to

the music of reason."

William L. Schaaf
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FOREWORD

Nearly three hundred years ago, Leibniz, the philosopher and a coinventor

of the calculus, had this to say: "Music is the pleasure that the human soul

experiences from counting without being aware that it is counting". In more

recent times, the renowned architect, theosophist and philosopher Claude

Bragdon once observed that "music is number made audible, architecture is

number made visible".
These two observations would seem to justify the conviction that music,

at least in some of its aspects, is somehow intimately and inextricably associated

with numbers and their properties. The early Greek mathematicians of the

Pythagorean School were firmly convinced of this. Since ancient times, men

have known that the pitch of a sound from a plucked string depends upon its

length, and chat if the ratios of the lengths of the strings are simple whole

numbers, the resulting sounds will be harmonious. Specifically, Pythagoras

was aware that lengths which sounded a note, its fifth and its octave were in

the ratio 2:3:4. In fact, Pythagoras and his disciples believed that the dis-

tances of the astronomical planets from the earth were also in a musical pro-

gression, and that therefore the heavenly bodies, as they moved through space,

gave forth harmonious sounds: whence arose the phrase "the harmony of the

spheres". The Pythagoreans fully believed that the only explanation of the

order and harmony and perfection in the Universe was to be found in the

science of numbers, or arithmetike.

!ndeed, this convictioh was so deep-rooted that for 1500 years, from the

time of Pythagoras to the Middle Ages, men classified knowledge as the Seven

Liberal Arts: the trivium (grammar, rhetoric, and logic) and the quadrivium

(arithmetic, astronomy, geometry, and music). Furthermore, the mathematical

sciences were thought of as follows: numbers absolute, or arithmetic: numbers

applied, or music; magnitudes at rest, or geometry; magnitudes in motion, or

astronomy.
What have other observers said about music and mathematics? Listen to

J. J. Sylvester, the brilliant, poetic, temperamental British mathematician of

the mid-nineteenth century who contributed so much to the theory of invariants

and matrices: "Mathematics is the music of Reason. The musician feels Mathe-

matics, the mathematician thinks Music". Or again, the opinion of Helmholz,

more the physicist than the mathematician: "Mathematics and Music, the most

sharply contrasted fields of scientific activity, are yet so related as to reveal the

secret connection binding together all the activities of our mind". Finally, from

the pen of Havelock Ellis, the celebrated author of the "Dance of Life" and

perceptive interpreter of civilization and culture: "It is not surprising that the

greatest mathematicians have again and again appealed to the arts in order to

find some analogy to their own work. They have indeed found it in the most

varied arts, in poetry, in painting, and in sculpture, although it would certainly

seem that it is in music, the most abstract of all the arts, the art of number

and of time, that we find the closest analogy."



The Two Most Original Creations
of the Human Spirit

ELMER B. MODE

"The science of Pure Mathemarks, in its modern developments, may claim to

be the most original creationof the human spirit. Another claimant for this psi-

don is music."
A. N. WHr1111113AD, Sanwa grad the Modem World.

I. Introduction. In the luotation given above a great Anglo-American

philosopher (I) characterized two distinct fields of human interest, one a

science, the other an art. The arts and the sciences, however, are not mumaly

exclusive. Art has often borrowed from science in its attempts to solv; s

problems and to perfect its achievements. Science in its higher forms has many

of the attributes of an art. Vivid aesthetic feelings are not at all foreign in the

work of the scientist. The late Professor George Birkhoff, in fact, wrote as

follows:
"A system of laws may be beautiful, or a mathematical proof may be

elegant, although no auditory or visual experience is directly involved in either

case. It would seem indeed that all feeling of desirability which is more than

mere appetite has some claim to be regarded as aesthetic feeling." (2)

Serge Koussevitzky, noted conductor, has stated also that "there exists a

profound unity between science and art." (3)
It is not, however, the purpose of this paper, to discuss the relationships

between the sciences and the arts, but rather to enumerate some of the lesser

known attributes which music and mathematics have in common. There is no

attempt to establish a thesis.

2. Number and Pitch. The study of mathematics usually begins with

the natural numbers or positive integers. Their symbolic representation has

been effectively accomplished by means of a radix or scale of ten, the principle

of place-value where the position of a digit indicates the power of ten to be

multiplied by it, and a zero. The concept of number is most basic in mathe-

matics. We cannot directly sense number. A cardinal number, such as five, is

an abstraction which comes to us from many concrete instances each of which

possesses other attributes not even remotely connected with the one upon which

our interest is fixed. Such widely differing groups as the fingers of the hand, the

sides of the pentagon, the arms of a starfish, and the Dionne quintuplets, are

all instances of "fiveness," the property which enables each group to be matched

or placed into one-to-one correspondence with the other. The establishment of

such equivalence requires no knowledge of mathematics, only good eyesight.

With these facts in mind we may state a definition familiar to mathematicians.

The (cardinal) number of it group of objects is the invariant property of the

group and all other groups which can be matched with it.

The positive integers constitute, however, but a small portion of the

numbers of mathematics. The former mark off natural intervals in the con-
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tinuum of teal numbers. The difference between two small groups of objectsis readily sensed; man finds no difficulty in distinguishing visually, at once,between three and four, objects, but the distinction between, say, thiny-two andthirty-three objects calls for something more than good vision.
In music, study begins with notes or tones. In western music their symbolicrepresentation is accomplished by means of a scale of seven, a principle of posi-tion, and the rest, which denotes cessation of tone. There is something perma-nent and unchangeable about a given note. You may sing it, the violin stringmay emit it, the clarinet may sound it, and the trumpet may fill the roomwith it. The quality or timbre, the loudness or intensity, and duration of onesound may be markedly different from another; yet among these differences ofsound there remains one unchanging attribute, its pitch. This is the same fora single such now or any combination of them. The pitch of a note may thenbe defined as the invariant property of :he note and all other notes which waybe matched with it. Notes which can be matched are said to be in unison. Pitch,also, as an abstraction, derived from many auditory experiences. The establish-ment of pitch equivalence does not require a knowledge of music, only a keenear.

The notes of the diatonic scale mark off convenient intervals in a con-tinuum of pitches. Within a given range, the interval between two tones of thescale is, in general, readily sensed, but outside of such a range the human earmay fail to distinguish between or even to hear two differing tones. As a mat-ter of fact, "tones" removed from the range of audibility cease to be such. Aspsychological entities they disappear and may be identified only as vibrationsin a physical medium.

Invariance of pitch is an important musical property and the ability of amusician not playing a kied instrument to maintain this property for a givennote is a necessary, but not a sufficient condition for his artistry. This recalls thestory of the distracted singing teacher who, after accompanying his none-too-aptpupil, sprang suddenly from the piano, thrust his fingers wildly through hishair, and shouted: "I play the white notes, and I play the black notes, but yousing in the cracks."

3. Symbols. Mathematics is characterized by an extensive use of symbols.They are indispensable tools in the work; they constitute the principal vehiclefor the precise expression of ideas; without them modern mathematics wouldbe non-existent. The most important mathematical symbols are, with fewexceptions, in universal use among the civilized countries of the world.
Music also is distinguished by a universal symbolism. The creation ofanything but the simplest musical composition or the transmission of sig-nificant musical ideas is difficult if not impossible without the symbols of music.Incidentally it may be remarked that the page of a musical score and thepage of a book in calculus are equally unintelligible to the uninitiated. Thereare very few fields of activity outside of mathematics (including logic) andmusic which have developed so extensively their own symbolic language.Chemistry and phonetics are nearest in this respect.
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In both music and mathematics preliminary training involves the acquir-

ing of technique. Mathematics demands such facile manipulation of symbols

that the detailed operations become mechanical. We are encouraged to elimi-

nate the necessity for elementary thinking as much as possible, once the funda-

mental logic is made plain. This clears the way for more complicated processes

of reasoning.
"It is a profoundly erroneous truism, repeated by all copy-books and by

eminent people when they are making speeches, that we should cultivatr the

habit of thinking of what we are doing. The precise opposite is the case.

Civilization advances by extending the number of important operations which

we can perform without thinking about them." [4]

In music also, the preliminary training involves a learning of technique.

The aim here is to be able to read, or to write, or to translate into the appro .

priate physical actions, notes and combinations of them with such mechanical

perfection that the mind is free for the creation ;Ind the interpretation of more

profound musical ideas.
4. Logical Structure. The framework of a mathematical science is well

known. We select a class of objects and a set of relations concerning them.

Some of these relations are assumed and others are deduced. In other words,

from our axioms and postulates we deduce theorems embracing important

properties of the objects involved.
Music likewise has its logical structure. The class of objects consists of

such musical elements as tones, intervals, progressions, and rests, and various

relations among these elements. In fact, the structure of music has been formally

described as a set of postulates according to the customary procedure of mathe-

matical logic. [5]
In mat. ..matics a development is carried forward according to the axioms

or postulates. If these are obeyed the results are correct, in the mathematical

sense, although they may not be interesting or useful. Mere obedience to law

does not create an original piece of mathematical work. This requires technical

skill, imagination, and usually a definite objective.

Music also has its axioms or laws. These may be as simple as the most

obvious things in elementary mathematics the whole equals the sum of all

its parts if we are counting beats in a measure; they may be less obvious to

the layman, such as the canons of harmony or the structural laws of a classical

symphony. Here again we may follow the laws of music scrupulously without

cvcr creating a worth-while bit of original music. Technical skill, imagination,

the fortunate mood, and usually a definite objective are requh.ites for the crea-

tion of a composition which not only exhibits obedience to musical lay s but

expresses significant ideas also. Occasionally the musician becomes bold and

violates the traditional musical axioms so that the resulting effects may at first

sound strange or unpleasant. These may become as useful, provoking, and en-

joyable, as a non-Euclidean geometry or a non-Aristotelian logic. In such man-

ner did Wagner, Debussy, Stravinsky, and others extend the bounds of musical

thought. In mathematics as well as in music one may have to become accus-

tomed to novel developments before one learns to like them.

5
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Benjamin Peirce defined mathematics as "the science which draws neces-sary conclusions." The operations from hypothesis to theorem proceed in logicalorder without logical hesitation or error. When the series of deductive opera-tions flows swiftly and naturally to its inevitable conclusion, the mathematicalstructure gives a sense of satisfaction, beauty, and completeness. Sullivan char-acterizes the opening theme of Beethoven's Fifth Symphony as one which "im-mediately, in its ominous and arresting quality, throws the mind into a certainstate of expectance, a st.-te where a large number of happenings belonging toa certain class, can logically follow." [6) The same is true of the openingphrase of the prelude to Tristtan and Isolde, or any really great enduringmasterpiece.
An interesting departure from the usual logical structure of a musicalcomposition occurs in the Symphonic Variations, "Istar" by Vincent d'Indy.Instead of the initial announcement of the musical theme with its subsequentvariations, "the seven variations proceed from the point of complex ornamen-tation to the final stage of bare thematic simplicity." Philip Hale, the eminentBoston musical critic related the following anecdote in the Boston SymphonyBulletin of April 23, 1937.

"M. Lambinet, a professor at a Bordeaux public school, chose in 1905 thetext 'Pro Musica' for his prize-day speech. He told the boys that the first thingthe study of music would teach them would be logic. In symphonic deveiop-ment logic plays as great a part as sentiment. The theme is a species of axiom,full of musical truth, whence proceed deductions. The musician deals withsounds as the geometrician with lines and the dialectitian with arguments.master went on to remark: 'A great modern composer, M. Vincent &Indy,has reversed the customary process in his symphonic poem "Istar." He bydegrees unfolds from initial complexity the simple idea which was wrapped uptherein and appears only at the close, like Isis unveiled, like a scientific lawdiscovered and formulated.' The speaker found this happy definition for sucha musical work 'an inductive symphony.' "
5. Meaning. A mathematical formula represents a peculiarly succinct andaccurate representation of meaning which cannot be duplicated by any othermeans. It is concerned with the phenomenon of variability; it involves thefunction concept. "A mathematical formula can never tell us what a thing is,but only how it behaves." [7]
How true this is of music! A theme of great music compresses into asmall interval of space or time, inimitably and accurately, a remarkable wealthof meaning. Music is not fundamentally concerned with the description ofstatic physical objects, but with the impressions they leave under varying aspects.Debussy's "La Met" is a fine example of this type of description. Music's interestis often not in the physical man but in his changing moods, in his emotions.One of the sources of the greatness of "Die Walkiire" is Wagner's genius forportraying vividly the conflicting aspects of Wotan's nature as god and asman.

The meaning of musical motive grows with study. It is usually exploitedor developed and from it are derived new figures of musical expression. A good

6
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theme demands more than the casual hearing before its deep significance is

completely appreciated. It is often worked up from an entirely insignificant

motive as in Beethoven's Fifth Symphony or in Mozart's G minor symphony.

In mathematics a basic formula or equation may have implications which can

be understood only after much study. It may appear to be almost trivial as in

the case of a + b = 6 + a or it may be less obvious and more elegant as in

the case of Laplace's equation,
Zati viu+ 0 .

Music consists of abstractions, and at its best gives expression to concepts

which represent the most universal features of life. Beethoven's music expresses

powerfully the great aspirations, struggles, joys, and tragedies of human exist-

ence. The Eroica symphony may have been composed with Napoleon in mind

but it portrays far more than the career of a single man. It is a portrayal of

the heroic in man and as such is universal in its application. It is well known

that a musical passage or composition may produce different responses among

people. The possibility of varying interpretation constitues one of the sources

of music's uniqueness and a reason for its power. It is an evidence of its uni-

versality. Herein lies a fundamental difference between music and painting or

sculpture. The effect of a musical episode is due to its wide potential emotional

applicability; the effect of a painting or piece of sculpture is due to its con-

creteness. Attempts at abstract representations by painters have not been gen-

erally successful; attempts at stark realism in music have likewise failed. Music

in its most abstract form, as for example, Bach's or Mozart's, often defies ap-

plication to the concrete. It seems to be above mundane things, in the realm of

pure spirit.
So it is with mathematics. Our conclusions are always abstract, and universal

in their application, although they may have originated from a special prob-

lem. The possibilities of interpretation and application of a given theorem or

formula are unlimited. Poincar6 is reported to have said that even the same

mathematical theorem has not the same meaning for rwo different mathema-

ticians. What differing reactions may ensue when Laplace's equation is set up

before an audience of mathematicians! What differing degrees of abstractness

are suggested by the two equations previously written!

6. The Creative Process. "It is worth noting . .. that it is only in mathe-

matics and music that we have the creative infant prodigy; . . the boy mathe-

matician or musician, unlike other artists, is not utilizing a store of impressions,

emotional or other, drawn from experience or learning; he is utilizing inner

resources. ..." (8)
Statements of this type have led many to believe that mathematical talent

and musical talent have more than an accidental relation. Some feel that

mathematicians are more naturally drawn to music than musicians are to

mathematics. As far as the writer has been able to ascertain, no serious investi-

gations on the relation between the two talents have been published. A brief

study of exceptionally gifted children yields no testimony that the child prodigy

7



in music has more than the average mathematical sense, or that the childprodigy in mathematics has exceptional ability in music.In a recent article, Mind and Music, [9] the inimitable English musiccritic, Ernest Newman, discusses the role that the subconscious mind mightplay in the creative processes of music. Hampered by a dearth of reliable testi-mony on this subject, he attempts, nevertheless, to estimate this role. Berliozand Wagner had written of their creative experiences without attempting anyself-analysis. So also had Mozart although Newman does not refer to him.Newman feels that the Memoirs of Hector Berlioz are not too reliable in thisrespect Wagner's letters, however, seem to indicate that many of his musicalideas were the ..,sult of an upsurge from the unconscious depths of his mind ofideas long hidden but suddenly crystallizing. The activity of his conscious mindwas often displaced by the upward thrust of these latent creative forces.The interpretation thus suggested is strikingly similar in many respectsto that described by Jacques Hadamard in his Essay on the Psychology of In-vention in the Mathematical Field. (10] This noted mathematician draws onthe related experiences of Poincaré, Helmholtz, Gauss, and others to discussthe origin of the inspiration or sudden insight that contributes to, completes,or initiates an original work. The role of thoughts that lie vague and undis-cernible in the subcor cious, only to become, of a sudden, clear and discernibleafter a period of unsuipected incubation, is described in undogmatic terms. Onecannot affirm, of course, that these opinions concerning the creative processare confined solely to music and mathematics, but it is interesting that theyare voiced by two eminent scholars, one from each field.
The greatest works of music are distinguished by their intellectual contentas well as by their emotional appeal. The sacred music of Bach, the symphoniesof Beethoven, or the operas of Wagner, offer subjects for analysis and discus-sion, as well as opportunities for emotional experience. Each composer hadideas to "work out," ideas to be developed and clarified by the forms andartifices of music, the object being to make their full significance felt by theappreciative listener.
Mathemstical creativity involves very much the same general develop-ment. Concepts must be clarified, operations carried out, latent meanings re-vealed. If these are significant and logically developed the result has a unityand a sense of completeness which brings intellectual and aesthetic satisfaction toboth author and reader.
7. Aesthetic Considerations. To many, mathematics seems to be a for-bidding subject. Its form seems to be more like that of a skeleton than thatof a living, breathing, human body. This idea, is, of course, derived from itsabstract character and from the demands which it makes for sharply definedconcepts, terse methods of expression, and precise rules of operation. In asense, mathematics lacks richness, if by richness we mean the presence of thoseimpurities which impart savor and color. These impurities may be in the natureof concrete examples, illustrations from, or applications to fields other thanmathematics. They may represent departures from the normal abstract logicaldevelopment, and may make no contributions whatsoever to the formal struc-
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turc which constitutes mathematics. But if we subtract from the richness of

mathematics, we add also to its purity, for in mathematics the structure or form

is more important than its applications. We may apply the mathematics to

many problems associated with human existence, but these applications are

not essential parts of pure mathematics, they lie apart from it.

"In music the flavor of beauty is purest, but because it is purest it is also

least rich. . . . A melody is a pure form. Its content is its form and its form is

its content. A change in one means a change in other. We can, of course, force

an external content upon it, read into it stories or pictures. But when we do so

we know that they are extraneous and not inherent in the music." [I I]

In a different sense mathematics is over-rich for its fields are unlimited in

extent and fertility.
"But no one can traverse the realm of the multiple fields of modern

Mathematics and not realize that it deals with a world of its own aeation, in

which there are strangely beautiful flowers, unlike anything to be found in the

world of external entities, intricate structures with a life of their own, different

from anything in the realm of natural science, even new and fascinating laws

of logic, methods of drawing conclusions more powerful than those we depend

upon, and ideal categories very widely different from those we cherish

most." f 12)
One needs here but to change a few words in order to describe the unique

and lovely creations of music. The melodies and harmonies of music are its own

inventions. They are often mysteriously beautiful, incapable of description by

other means and without counterpart elsewhere in the world about us. A

musical composition may be of the utmost simplicity or of the most intricate

character, yet it may "well-nigh express the inexpressible." It is exactly this

ability to convey the "inexpressible" ideas that give mathematics and music

much in common. The mathematics student who seeks always a meaning or

picture of each new proposition often fails to appreciate the power of that

which defies representation.
8. Conclusion. There is much of interest to those who love both music

and mathematics, and much has been written by mathematicians on the bear-

ings of one field on the other. Archibald has written delightfully of some of

their human aspects as well as the scientific. Birkhoff has attempted the evalua-

tion of musical aesthetics by quantitative methods. Miller and others have

brought the instruments of physics to bear upon the problems of musical tone

and acoustics.
Success in music arid in mathematics also depend upon very much the

same things fine technical equipment, unerring precision, and abundant

imagination, a keen sense of values, and, above all, a love for truth and beauty.
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Mathematics of Music
ALI IL AMIR-MOEZ

Though music may seem far removed from what many think are the cold

logical aspects of mathematics, nevertheless, music, with its emotional appeal,

has a mathematical foundation. The following article will show how highly

mathematical are the sounds, the scales and the keys (the parts, so to speak)

of music.
1. Harmonics of a Sound: When a sound is made, for example, by

striking a string of a musical instrument, each particle of air next to the source

of the sound vibrates. We shall call the number of vibrations of that particle

of air in one second the number of vibrations of the sound. The larger this

number is, the higher the pitch of the sound becomes.

Suppose a sound is called C, and its number of vibrations is c. That is, if,

for example, the sound C, and its number of vibrations is C. That is, for ex-

ample, the sound C makes a particle of air vibrate five hundred times in one
second, we say c=500. It was discovered by Greek mathematicians that if after

the sound C is heard we make another sound S whose number of vibrations is

twice the number of vibrations of C, i.e., 2c, then S will be pleasant to heat.

As far as the history of mathematics shows, this idea is due to Pythagoras. The

sound T with three times as many vibrations, i.e., with 3c vibrations, is also
pleasant to hear after C. This fact is true for sounds with vibrations c, 2c, 3c, 4c,

5c, etc. Usually, if we play these sounds successively in some order with a certain

rhythm, we call it a melody. If we play a few of these sounds together, we call

it harmony.
We shall call the sounds with vibrations 2c, 3c, 4c, etc. harmonics of C.

2. A Primitive Scale: In the work of Omar Khayyani*, it is mentioned

that the study of the ratios of integers is essential for the science of music. That

was the only mathematics used in the Greek theory of music. To explain the
idea, we start with the sound C, and we suppose that C, is the name of the sound
with 2c vibrations. Let us call G, the sound whose number of vibrations is 3c.

( We shall explain why we have chosen these names. ) If a sound with twice as

many vibrations is a harmonic of a given sound, it is reasonable to believe that

the sound G with one-half as many vibrations as G, is a harmonic of C. Thus

we can say that the sounds C, G, and C, are harmonic of one another, and their

vibrations are, respectively, c, " and 2c. We can compare these sounds and

their vibrations by constructing the following table.

Sound C G C,

c I
.

3
-,..--,

4
2

°Omar Khayyam. "Discussion of Difficuhies in Euclid," Scripm Aftobtaramica V. 24, pp. 275 303

(1959).
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The first line of the table shows the name of each sound, and the secondline shows the corresponding number of vibrations. For example, under G wesee 3/2, which means that G has 2(.12 vibrations in a second.
The names chosen here are actually those chosen in the scale. If C is thenatural C of the scale, then G has 3/2 as many vibrations as C. C, is the nextso-called C, which is usually called the octave of C.
In this scale we have only three sounds. If we play C, G, and octave of Con the piano, we can almost see how they sound. Of course, we cannot makemuch music with three sounds.
3. Oriental Scale: Let us extend the idea of section 2 further. We rakethe fifth and seventh harmonics of C, i.e., the sounds whose numbers of vibra-tions are 5c and 7c. We call these souads, respectively, E, and K. We shallexplain the choice of the subscripts shortly. Let us compare these sounds withC the octave of C, and with C2, the octave of C. Note that 2c is the numberof vibrations of C and 4c is the number of vibrations of C,. Thus, if E, is asound with half as many vibrations as E then we see that 'el: is the number ofvibrations of E. Similarly, we can choose a sound K, whose number of vibra-tions is If we compare these sounds according to their pitch, we get themin the order C E K,, C. This is clear because

5 72 < < < 4.2 2
Since these sounds are all harmonics of C, the sounds E and K, which havehalf as many vibrations as E, and K respectively, i.e., '".14 and 'ci are alsoharmonics of C. As in section 2, we can make a table as follows:

Sound CEGK C1

c 7
-4- 2

.

These five sounds together approximately constitute the oriental scale.
4. Middle-East Scale: If we proceed with what was done in section 3,we get more sounds in the scale. Since the sounds with vibrations 2c, 4c, 8c, 16c,etc. do not contribute to the scale, we choose the sounds between them. Inparticular, let us call D, the sound with 9c vibrations. We also choose P Hand B, with vibrations, respectively, 1 lc, 13c, and 15c. As before, we maychoose D2, P, H and B, with vibrations "" "`/2, "" and "" respectively.Then we choose D, H, and B with vibrations ""/, ", fr/, and '"/, respec-tively. We shall construct a table as before.

Sound CD E P GH K B C,

c
-

1

9

i -11-

.
5

-4.1
_

11I 3 13

T 7 15T 2

A scale may be made out of these sounds with eight names in the scaleinstead of seven. Before we discuss this set of sounds, we make a table usingthe theoretical (physical ) sounds of the scale.
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Sound C D
,

E G ABC1 -

c 1
4jj3 5 15

_

2

If we compare P and F, we see that that the ratio of the number of

vibrations of P to the number of vibrations of F denoted by
P 11 4 33

F 8 3
=

32

This shows that P is sharper than F. This is where the middle-east music is

different from the physical scale. The sound H with "" vibrations is not used

in the middle-east music. Thus, C, D, E, P. G, K, B, C, approximately con-

stitute the sounds of the middle-east scale. We see that
K 7 5 21

A 4 3 20

Therefore, K is also sharper than A.
5. Tones and half-tones: If we study the physical scale, we observe that

p 9 _E 10 F 16 ("i _9 A10 B_ 9 C16
C 8 ' D 9 * E 15 ' F 8 9 A 8 ' B 15

This suggests the idea of small and large intervals or tones and half-tones. We

shall write this as follows:

Sound C D E F A B c
I
1Tone I

1.

1

i
I
1

.
1

1
i AI,
i z-

I
I
I
I
L

1

i:l,
;

i
I

l'- 1

: I
,

:

:.

The above table indicates which interval is a tone and which is a half-tone.

For example, between E and F is a half-tone. But, we really should say large

and small intervals.
6. Geometric Progression: An ordered set of numbers is called a

geometric progression when the ratio of each one to its predecessor is always

the same. For example, the set
5, 10, 20, 40, 80, . . .

is a geometric progression. The ratio is 2, that is, the ratio of each number to

the one before it is two. Indeed, we can produce as many members of this set

as we desire.
If one member of a set and the ratio are given, we can always produce

as many members as needed. For example, if 1/2 is a member of the progression

and the ratio is VI, then we can write some of the members of this progression,

such as 1
-1 2

Ir2) ( V2) = 2 (VD)'(2 2 2

7. Geometric Means: For two numbers, the geometric mean of them

is the square root of the product of them. This is a sort of average, similar to

one-half of the sum, which is called the arithmetic mean. As for the arithmetic

average of a few numbers, we add them and divide the sum by the number of
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them; for the geometric mean of a few numbers we multiply them and takethe root of order equal to the number of them. For example, the geometricmean of
5, 7, 2, 6

is

'V(5)(7) (2) (6) =
8. Modern Scale: Since two sounds are compared in terms of the ratioof their number of vibrations rather than the difference of the number of vi-brations, in order to make all intervals equal and call each one a "half tone,"we need to take the geometric mean of twelve half-tones of the scale. Thus thenumber of vibrations of the sounds in the modern scale form a geometricprogression which has 1 as a member and "VI as its ratio. Thus the modernscale can be shown in the following table:

D E F G- A B
'Sound IC

c 1 _(l V-2)2J (uNri)' r VIY ("11/)' (" VI)' (I' V2)", 2

As we observe, the power of "V2 increases by 2 whenever we have a tone:and it increases by one whenever we have a half-tone.
The modern scale is not really as natural to the ear as the old Greek scale;but with slight training, the ear gets used to it. The important fact is thatmodulation from one key to another becomes extremely easy.There is one disadvantage in the modern scale, namely, the third har-monic of C, i.e., G, becomes slightly flat. The sound G is called the dominantof the scale and, being flat, makes the musk dull. We shall show this factmathematically. In the modern scale

G = = 1.498

But, in the natural scale

1.5C 2

This mistake is always corrected in the violin. This is one of the reasons thatan orchestra with string instruments sounds much better than a piano solo.9. Major Keys: A sample of the scale of a major key is the one insection 8. This is called "C major" since it starts with C. C is also called thetonic of the scale. In any major key, the sound (notes) of the scale have thesame relation to one another as the ones in C major. That is, the interval be-tween the third and fourth elements is one half-tone; also the interval betweenthe seventh and eighth elements is a half-tone, and the other intervals are allone tone.

The next major key is G major. This has been chosen for two reasons.One is that the note G is the third harmonic of C; the other is that this keyhas a higher pitch. Note that going from C to its second harmonic does notchange the scale. The table of the scale of this key is as follows:
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We observe that in order to have the interval between the seventh and

eighth, i.e., subtonic and tonic, a half tone, we have to use F (F, sharp)

with vibrations ( "N(7) " instead of F, with (
If we choose the fifth note of this scale as the first of a new scale, we get

the key of D major. This key needs two sharps.
The reader may try this idea and work out tables for several major keys

which come after G major.
As it was possible to get major keys with higher pitch, it is also possible

to get major keys with lower pitch.
Suppose we look at the table in section 8 and consider a scale for which

the fifth note is C. This will have the followin,g table:

,
Sound F. G. A. B.' IC D E

c C" V12)-*

I
(2 V2)-* (1' V-2)4 1 (1' 1,11? C3Nr2Y

(13 V2).

Here we have to use Bb, i.e., B flat, in order to have the interval between the

third and fourth notes be a half-tone.
If we proceed in this way, each lower key has an extra flat. We leave it

to the reader to produce many major keys and write tables for the corresponding

scales.
1 a Minor Keys: To imitate the crying sound of middle-east music,

minor keys seem to be proper. Most older pieces written in minor keys avoid

the very large interval followed by a half-tone, but we find this combination

of sounds in recent pieces.
Many forms of minor keys have been considered. We shall describe only

one of the most recent pieces.
To obtain a new scale, instead of going to the third harmonic of C, we

may go to the fifth harmonic of C. But, this key is not the simplest minor key.

Thus we move down to A, whose fifth harmonic is approximately C. The table

of the scale for A minor is the following:

Sound B. C D E F 0-# A

(u v.2).s (s1.(2), I (' v-2), es Iry (.1v2) c vly. (i, v2).

As the physical scale shows, it is desirable to have a half-tone interval between

the subtonic and the tonic of a scale. This brings Qt into the scale. As we see,

the interval between F and G# is one and a half tones.
Other minor keys are obtained from this in a manner similar to that by

which the major keys are obtained from C major. We leave it to the reader to

obtain them.
It would be very interesting for one to compare his knowledge of music

with what has been said here.
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Numbers and the Music of the East and West
ALI R. AMIR-MOEZ

Let C be a sound whose number of vibrations is c. Having heard C, any

sound with number of vibrations equal to kc, k 1, 2, ... , is pleasant to hear.

These sounds are called the harmonics of C. If we play a few of these sounds

successively with some rhythm, a pleasant melody is made. If we play a few

of these sounds together, a rich sound comes our and it is called harmony. A

sound C with vibrations 2c is called the octave of C.

Let us consider two octaves of C, say e and C", and construct the follow-

ing table.
Sound C G Ci G' C"

c l 1
2

2 3 4

As shown in the table let G' be the third harmonic of C. Since the sound

G' with 3c vibrations is pleasant to be heard with C, it is reasonable to think

that G with half as many vibrations, i. e., c, would also make harmony with

C. In fact this sound is called the dominant of the scale. This way we obtain

only three sounds in the scale. Now in order to get more sounds in the scale

let us consider three octaves of C, say C' C", and CH. Let us construct the fol-

lowing table.

Sound CE G KC Ei G' le C" E" G" K" 0"
5 3 7 2 5i 3

7 4 5 6 7 8

As shown in the table the 5th harmonic of C is called E". Again it is

conceivable that since E" is a harmonic of C, also E' with vibrations c, and E

with vibrations c will be harmonic with C. A similar process can be used for

the 7th harmonic of C. called K", and K', K could be found accordingly. This

sound K is missing in the physical scale. If we consider only these five sounds.

the scaie will be as follows:

Scund ODD=
MEI 111

An approximation of these sounds appears frequently in the music of the

Far East.
Now let us consider four octaves of C, say C, C", C8", and C".. In order to

get more sounds in the scale, we construct the following table by considering

the harmonics of orders 9, 10, 11, 12, 13, 14, and 15 of C, and putting tones

with of these frequencies in the scale.
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Sound 3 D DOG EICKEilta cin Dm
Ew GISICSIMIGIS
ell 13 11111 16

c IIDOEMBEINIIIIIIIII 10
Now theoretically speaking the sounds of the scale stand as follows:

Sound C D ma

IffilliKill
c am

1

Comparing this table with the previous one we see that
1:F.= if. 4 33.

8 3
1. e., P is sharper than F. Some people are of the opinion that half of ahalf tone exists in the music of the middle east, but this is not true. The differ-ence is actually the use of P instead of F. As we shall show in the modern orpractical scale, F is slightly sharper in theoretical scale, but it is still too flat tobe equal to P.

We see also that H and K are replaced by A. An experiment at the Schoolof Science, University of Teheran, made it certain that H, i. e., the 13th har-tnonic of C does not exist in the music of the middle east. But K is also usedinstead of A. The ratio
K:A po

shows that K is sharper than A.
Now if we look at the intervals in the theoretical scale we see that

D:C=:,E:D=142,F:E=1,6:F=:.A:G=8:A=2,andC:B=
116.

9 8 5

This has suggested the idea of tones and half tones for today's music. Lookingat the preceding intervals we have approximately 12 half tones between C andC. In practical scale all half tones are at equal intervals, i.e., we have to havethe geometric mean of these half tone intervals. Clearly the product of intervals,i.e.,9 10 16 9 10 9 16 2.
8 9 15 8 9 8

Therefore the geometric mean, considering 12 half tones, will be "Na. We canreally describe each half tone as a term in a geometric progression whose firstterm is 1 and its ratio is "1/2.
Let us compute the ratio of the dominant and the tonique, i. e.,Clearly G is the 8th term of the progression and its frequency will be
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a 1.498 which is a little more flat than -; = 1.5. This is the place

that in violin is always corrected. The advantage of the modern scale is that
modulation from one key to another is very convenient. In fact musicians say:

"If the sensitive ear of a musician does not distinguish these slight differences of
sounds, the mathematiciins ear of course wouldn't distinguish them either."
But the musician's ear has been trained to appreciate the sounds of prac-

tical scale. However any simple melody of this sort sounds harsh to a Persian
tribesman.

1 9
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Sebastian and the Wolf
THEODORE C. RIDOUT

This is not another parody on Little Red Ridinghood. It is rather a tale

of how a musician battled a "wolf," and how a schoolteacher fought the same

fight in the classroom.
The "wolf" we are interested in is a beast that plagued the makers of

musical instrumentz for many centuries. Although many attacked him with

vigor, and Johann Sebastian Bach laid him fairly low, the ghost of the critter

still haunts our concert halls and keeps turning up in the physics laboratory.

Since he has a mathematical origin, it seems fitting that we should discuss him

in these pages.
The problem is something like this. You tune your violin by fifths, ad-

justing string tension until you hear a perfect fifth when two strings are

sounded together. The fifth is a basic unit in musical tuning.

But so, also, is the octave. Take a very simple one-stringed instrument,

Pythagoras' monochord. Every time we quadruple the tension on the string we
double the rate of vibration, and the tone goes up an octave. Starting at a
single vibration per second, the process of doubling the frequency of vibration

takes us up in geometric progression to frequencies of 2, 4, 8, 16, . .. until we
reach 256, where we pause for breath and call the tone "middle C." If we
double again we get "upper C," at a frequency of 512 per second, and so on,

until the pitch is too high for even your dog to hear.

According to the laws of physics, if C has a frequency of 256, the perfect

fifth above it, G, will have a frequency of 256 X 1.5, which is 384. Here C:G

1:1.15, or 4:6. Moreover the triad (or chord) C-E-G sounds best if the
frequencies of these notes have the exact ratio 4:5:6. These combinations are

pleasing to the ear because the harmonics, or overtones, as well as the funda-

mental topes, combine with a minimum of conflicts or undesirable beats.

Filling in, we have the following notes and their relative frequencies:
9

C (frequency k)-- D k) Ei 5 F ( k )- G( k )- A(
3
5- k B k )-- C.,(2k)

4 1 2 8

This is known as a pure scale, and its tones have exact harmonic relations to

the keynote. Music played on an instrument so runed sounds rich and ethereally

beautiful.
So much for theory. I will now retire to my workshop and construct a

piano. Starting at a very low C (about 32 vibrations per second) I go up bv
perfect fifths along the musical alphabet. The nores will be C, G, D, A, E, B, .

G$, Eb, Bj, F, and C. From bottom C to top C is just seven octaves. This

looks like the beginning and the end of a complete and perfect keyboard, and

I flatter myself I can fill in the other notes in proper ratios to make a shining

row of ivories. But first I had better check my fifths.

Going up from C to G, 1 increased my frequency by the correct factor,

1.5. From G up to D. I again multiplied by 1.5. In all, I multiplied twelve
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times b this factor, so that rny top C vibrates at a frequency that is (1.5)"times that of the bottom C, or 129.75 times the original.
But suppose I go up by octaves? Starting at the same C as before anddoubling frequency until I have gone up seven octaves, I arrive at a frequencythat is 21, or 128, times the original. I now have two top C's, and there is adifference of about a quarter of a semitone between them. What to do?
VariOLIS solutions have been offered. For many centuric4 a compromiseknown as the mean-tone scale was used. This can best be illustrated by arrangingthe twelve fifths around the dial of a clock, with C at twelve o'clock, G at oneo'clock, and so on. Instead of the fifths being tuned in the correct ratio 1.5, theyare tuned in the compromise ratio Y5, which equals 1.49535, introducing avery slight error. This error multiplied twelve times leaves a gap somewhere.Suppose I have the gap come after 11 on the clock, between F and top C onmy keyboard. Instead of a normal interval of 7 semitones here, I have aninterval of 7.4 semitones.

A musical composition involving this overgrown interval would be any-thing but harmonious, and might even howl like a wolf in the forest; hence theinterval came to be known as the quinte-de-loup, or wolf fifth. One could playonly in certain keys that did not run afoul of this beast.
Mathematicians of course came to the rescue, but their aid was not alwaysappreciated. As far back as 1482 a Spaniard named Bartolo Rames proposedan equalized tuning in which all semitones ..hould go up in the ratio of "VI,or 1.05946 times the note below. This divides the error exactly between suc-cessive intervals, slightly reducing each fifth, so that a complete set of twelvefifths can begin and end on exactly the sax_ tones as a set of seven octaves.With the intervening notes filled in, we have a slightly imperfect but veryuseful tuning known as equal temperament.

This solution made little headway, in spite of various advocates, until theappearance of a mighty figure on the scene. This was none other than JohannSebastian Bach, who proposed equal temperament for all keyboard instruments,and proceeded to rune his clavichord and harpsichord accordingly. He wasthus able to play in any one of the tweleve possible keys, and could modulatefrom one key to another without encountering any wolves.
To demonstrate the system he composed a series of twenty-four preludesand fugues, making use of all twelve keys. This was in 1722. He later re-peated the process, giving us in all forty-eight pieces under the title "The Well-Tempered Clavichord." The term "well-tempered" of course refers to equaltemperament. It is generally agreed that this work was chiefly responsiblefor the present universal use of equal temperament.
It was many generations beiore the mean-tone scale was abandoned inthe tuning of pipe organs; and Bach was forced to compromise with the wolfat the car note. For this reason his organ compositions are written only in thesimpler kc
My a :bra class was naturally interested in all this. Plainly "Nr2 raisedto the twelfth power is 2, so that twelve semi-tones will fit perfectly into an
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octave, forming a continuous chromatic scale. We checked the value of the

radical on a slide rule. The physics department demonstrated a sound disk for

us, proving to all the neighborhood that the frequencies under discussion pro-

duced a musical scale. The disk contained 8 rows of holes, corresponding to the

notes of the scale, as follows: C (24 holes), D (27 ), E (30), F (32 ), G (36 ),
A (40), B (45 ), C (48 ). When spun by an electric motor and played upon
with a jet of compressed air, such a disk gives off "musical" tones approach-

ing the power of a steam calliope, and in the exact harmonic ratios of the pure

scale.
My students wrote papers on such topics as the clavichord, pipe organs,

orchestration, electronic instruments, acoustics, and so on. One or two whose
musical background was stronger than the mathematical were somewhat

shocked to find figures encroaching on the province of the Muse. These dis-

senters wgre cheered, however, to know that Robert Smith in 1759 charac-

terized equal temperament as "extren-ely coarse and disagreeable," and that
Helmholtz in 1852 considered that it made every note on the piano sound
"false and disagreeable," and that on the organ it produced a "hellish row."

Helmholtz had used just intonation, as he called it, or pure tuning, for his

experimental harmonium, and like many a musical expert, became so con-
ditioned to perfect harmonies that he found those of equal temperament very

distasteful.
Thus, thanks to the Queen of Sciences, the "wolf" has now become a

thing of the past, though my young daughter tells me that one or two of his cubs

show up occasionally at the high-school band rehearsals.
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